110 research outputs found

    Production and partial purification of extracellular tannase by Klebsiella pneumoniae MTCC 7162 isolated from tannery effluent

    Get PDF
    Diverse bacteria belonging to various taxa were isolated from tannery effluent of leather industries located at Ranipet, India and were screened for the production of extracellular tannase. One of the strains identified as Klebsiella pneumoniae MTCC 7162 was found to produce tannase (3.4 U/ ml) at pH 6.0, 37°C and 100 rpm. Use of individual carbon and inorganic nitrogen sources resulted in lower tannase production. However, a combination of urea and corn steep liquor extract yielded marginal increase in tannase production (3.9 U/ ml). End-product repression was also studied with inclusion of gallic acid to the growth medium. Enrichment with various additives of metal ions and detergents resulted in inhibition of tannase production. The enzyme was partially purified using ammonium sulfate precipitation followed by the use of DEAE-cellulose. SDS-PAGE analysis indicated that the molecular weight of the protein to be 46.5 kDa. The enzyme was found to be active in a wide range of pH and temperature with an optimal activity at pH 5.5 and 40°C.Key words: Bacterial tannase, Klebsiella pneumoniae MTCC 7162, tannery effluent, minimal media

    In vitro antioxidant activity of Vetiveria zizanioides root extract

    Get PDF
    Free radicals induce numerous diseases by lipid peroxidation and DNA damage. It has been reported that some of the extracts from plants possess antioxidant properties capable of scavenging free radicals in vivo. Vetiveria zizanioides belonging to the family Gramineae, is a densely tufted grass which is widely used as a traditional plant for aromatherapy, to relieve stress, anxiety, nervous tension and insomnia. In this regard, the roots of V. zizanioides was extracted with ethanol and used for the evaluation of various in vitro antioxidant activities such as reducing power ability, superoxide anion radical scavenging activity, deoxyribose degradation assay, total antioxidant capacity, total phenolics and total flavonoid composition. The various antioxidant activities were compared with suitable antioxidants such as butyl hydroxy toluene, ascorbic acid, quercetin, alpha tocopherol, pyrocatechol and curcumin respectively. The generation of free radicals O2-, H2O2, OH and NO were effectively scavenged by the ethanolic extract of V.zizanioides. In all these methods, the extract showed strong antioxidant activity in a dose dependent manner. The results obtained in the present study clearly indicates that V. zizanioides scavenges free radicals, ameliorating damage imposed by oxidative stress in different disease conditions and serve as a potential source of natural antioxidant. The study provides a proof for the ethnomedical claims and reported biological activities. The plant has, therefore, very good therapeutic and antioxidant potential

    Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats: An Identification of Possible Biomarkers

    Get PDF
    The present investigation was aimed to study the antidiabetic, antihyperlipidemic, and in vivo antioxidant properties of the root of Sphaeranthus indicus Linn. in streptozotocin- (STZ-) induced type 1 diabetic rats. Administration of ethanolic extract of Sphaeranthus indicus root (EESIR) 100 and 200 mg/kg to the STZ-induced diabetic rats showed significant (P < .01) reduction in blood glucose and increase in body weight compared to diabetic control rats. Both the doses of EESIR-treated diabetic rats showed significant (P < .01) alteration in elevated lipid profile levels than diabetic control rats. The EESIR treatment in diabetic rats produced significant increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and decrease in thiobarbituric acid reactive substances (TBARS) levels than diabetic control rats. Administration of EESIR 200 mg/kg produced significant (P < .01) higher antioxidant activity than EESIR 100 mg/kg. The high performance liquid chromatography (HPLC) analysis of EESIR revealed the presence of biomarkers gallic acid and quercetin. In conclusion, EESIR possess antidiabetic, antihyperlipidemic, and in vivo antioxidant activity in type 1 diabetic rats. Its antioxidant and lipid lowering effect will help to prevent diabetic complications, and these actions are possibly due to presence of above biomarkers

    Analytical Study of Base Isolation- A Review

    Get PDF
    Now a days the rate of happening of seismic events increasing and due to that so many structures got collapsed or damaged. In order to reduce the damage to structures during earthquakes, now a days the base isolation system is widely adopted and used over the world. This paper makes a wide review on the various base isolation techniques adopted and used. Different types of isolating bearings and materials used in it are reviewed. Here the review is done for the isolation system in normal R.C buildings (regular and irregular in plan) and also for bridges. The effect of base isolation system on some historic structures is also reviewed. The various advantages and disadvantages of different isolating bearings are reviewed. Here the effect of temperature on some isolating devices are also reviewed

    N-terminal acetylation and arginylation of actin determines the architecture and assembly rate of linear and branched actin networks

    Get PDF
    The great diversity in actin network architectures and dynamics is exploited by cells to drive fundamental biological processes, including cell migration, endocytosis and cell division. While it is known that this versatility is the result of the many actin-remodeling activities of actin-binding proteins, such as Arp2/3 and Cofilin, recent work also implicates post-translational acetylation or arginylation of the actin N-terminus itself as an equally important regulatory mechanism. However, the molecular mechanisms by which acetylation and arginylation alter the properties of actin are not well understood. Here, we directly compare how processing and modification of the N-terminus of actin affects its intrinsic polymerization dynamics and its remodeling by actin-binding proteins that are essential for cell migration. We find that in comparison to acetylated actin, arginylated actin reduces intrinsic as well as formin-mediated elongation and Arp2/3-mediated nucleation. By contrast, there are no significant differences in Cofilin-mediated severing. Taken together, these results suggest that cells can employ these differently modified actins to regulate actin dynamics. In addition, unprocessed actin with an N-terminal methionine residue shows very different effects on formin-mediated-elongation, Arp2/3-mediated nucleation, and severing by Cofilin. Altogether, this study shows that the nature of the N-terminus of actin can promote distinct actin network dynamics, which can be differentially used by cells to locally finetune actin dynamics at distinct cellular locations, such as at the leading edge

    Rapid production of pure recombinant actin isoforms in Pichia pastoris

    Get PDF
    Actins are major eukaryotic cytoskeletal proteins, which perform many important cell functions, including cell division, cell polarity, wound healing, and muscle contraction. Despite obvious drawbacks, muscle actin, which is easily purified, is used extensively presently for biochemical studies of actin cytoskeleton from other organisms / cell types. Here we report a rapid and cost-effective method to purify heterologous actins expressed in the yeast Pichia pastoris. Actin is expressed as a fusion with the actin-binding protein thymosin β4 and purified using an affinity tag introduced in the fusion. Following cleavage of thymosin β4 and the affinity tag, highly purified functional full-length actin is liberated. We purify actins from S. cerevisiae, S. pombe, and the β- and γ- isoforms of human actin. We also report a modification of the method that facilitates expression and purification of arginylated actin, a form of actin thought to regulate actin dendritic networks in mammalian cells. The methods we describe can be performed in all laboratories equipped for molecular biology, and should greatly facilitate biochemical and cell biological studies of the actin cytoskeleton

    Expression and purification of tau protein and its frontotemporal dementia variants using a cleavable histidine tag

    Get PDF
    Recombinant tau protein is widely used to study the biochemical, cellular and pathological aspects of tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTPD-17). Pure tau in high yield is a requirement for in vitro evaluation of the protein's physiological and toxic functions. However, the preparation of recombinant tau is complicated by the protein's propensity to aggregate and form truncation products, necessitating the use of multiple, time-consuming purification methods. In this study, we investigated parameters that influence the expression of wild type and FTPD-17 pathogenic tau, in an attempt to identify ways to maximise expression yield. Here, we report on the influence of the choice of host strain, induction temperature, duration of induction, and media supplementation with glucose on tau expression in Escherichia coli. We also describe a straightforward process to purify the expressed tau proteins using immobilised metal affinity chromatography, with favourable yields over previous reports. An advantage of the described method is that it enables high yield production of functional oligomeric and monomeric tau, both of which can be used to study the biochemical, physiological and toxic properties of the protein
    corecore